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Chronic obstructive pulmonary disease
(COPD) remains a leading cause of
morbidity and mortality worldwide. In this
Update, we review the progress made in
2018 on mechanisms of disease, clinical
epidemiology, and therapeutic options and
highlight areas for future research.

Mechanisms of Disease

Airway Biology and “Pre-COPD”
Reduction in ciliated cells and increase in
mucin-producing cells are known features
of COPD. Ghosh and colleagues
demonstrated that compared with patients
without COPD, those with COPD have
fewer numbers and impaired self-renewal
capacity of airway basal progenitor cells (1).
The progenitor cell count correlated with
lung function and the presence of
progenitor cell depletion in some smokers
without airflow obstruction suggest a
possible “early” COPD phenotype (1, 2).

Lung Immunity and Infections
Individuals with COPD are prone to lung
bacterial infections. Alveolar macrophages
from patients with COPD show a selective
defect in opsonic phagocytosis that is
associated with bacterial colonization and
FEV1 (3, 4). In small airways, secretory IgA
is an important component of mucosal
defenses against infection. In mice exhibiting
COPD-like features and lacking secretory
IgA, neutrophil depletion, antibiotics, and
roflumilast attenuated airway remodeling

and emphysema (5, 6). These findings
suggest that impaired immunity, infection,
and neutrophilic inflammation may all
contribute to COPD progression.

Other immune cell types are also
involved in COPD pathogenesis. Finch and
colleagues demonstrated increased
cytotoxicity of lung natural killer cells in
smokers with COPD compared with smokers
without COPD, with the degree of
cytotoxicity correlating with the Global
Initiative for Chronic Obstructive Lung
Disease (GOLD) stage of disease severity (7).
In a mouse model, natural killer cytotoxicity
was largely independent of epithelial cell
ligands and relied on priming by dendritic
cells in an IL-15–dependent manner (7, 8).

Viral infections are a frequent cause of
COPD exacerbations. In a murine
elastase/LPS-induced emphysema model,
the expression of IL-17 and IL-23 was
increased after infection with the respiratory
syncytial virus. Although this virus alone did
not induce emphysematous changes in
control animals, it potently exacerbated
emphysematous changes present in
elastase/LPS-treated mice. As administration
of an anti–IL-17 antibody partially attenuated
the effects of respiratory syncytial virus
infection, it could be a future therapy for viral
COPD exacerbations (9, 10).

Protease–Antiprotease Balance
Proteases and their regulators, such as
AAT (alpha-1 antitrypsin), have garnered
recent interest for their role in COPD

pathogenesis. Polverino and colleagues
reported that the expression of ADAM8
(ADAM metallopeptidase domain 8), a
metalloproteinase, was higher in the airway
epithelia of nonsmokers than in smokers
without COPD and was further decreased in
individuals with COPD (12). Similarly,
cigarette smoke–exposed mice had
decreased ADAM8 expression, and
ADAM8 knockout mice developed more
emphysema after cigarette smoke exposure
than wild-type mice. ADAM8 induced
epidermal growth factor receptor shedding
from airway epithelial cells, leading to
decreased mucin gene expression (11, 12).
In contrast, Wang and colleagues reported
higher ADAM9 expression in airway epithelia
from patients with COPD than from
nonsmokers and smokers without COPD
(14). Furthermore, ADAM9 knockout mice
exposed to cigarette smoke were protected
from developing small airway fibrosis and
emphysema (13, 14). These studies confirm
that proteinases are significantly involved in
the development of COPD.

One of the best-studied antiproteases is
AAT, although its deficiency likely remains
underdiagnosed in patients presenting with
COPD. Although screening for AAT is
available, some variants may be missed
when relying on isoelectric focusing for
diagnosis. Matamala and colleagues
performed extended genotyping in patients
with AAT deficiency and found seven novel
variants of the SERPINA1 gene that were
not previously described (15). Most
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mutations led to intracellular accumulation
of AAT polymers (15).

Cela1 is a stretch-activated digestive
protease that may be important in stretch-
dependent remodeling processes in the
postnatal lung. AAT is an important
regulator of this process, and Cela1 is
increased in humans with AAT-deficient
emphysema. Joshi and colleagues
demonstrated that an antisense
oligonucleotide mouse model of AAT
deficiency resulted in emphysema with
increased Cela1 mRNA (16). In addition,
Cela12/2 mice were protected against
emphysema in this model. These data
support a potential role for anti-Cela1
therapies in AAT deficiency (16).

Another potential target for AAT
deficiency was described by Nath and
colleagues, who examined the activity of a
major serine-threonine phosphatase, PP2A
(protein phosphatase 2A), which was reduced
in human bronchial epithelial cells from
patients with COPD compared with
nonsmokers (17). Expression of an endogenous
PP2A inhibitor, CIP2A, and ERK (extracellular
signal–related kinase) phosphorylation were
increased in cells from patients with COPD.
Silencing of CIP2A with a siRNA in human
epithelial cells or treatment with erlotinib led to
increased PP2A activity, decreased ERK
phosphorylation, and a reduction in matrix
metalloproteinases 1 and 9 (17, 18).

Genomics and Epigenomics
Although prior genome-wide association
studies (GWASs) have identified variants
associated with COPD, they do not explain
most of the disease heritability. Prokopenko
and colleagues conducted a large whole-
genome sequencing study in subjects with
severe COPD and identified more than 20
million new variants, 10,000 of which had
potential importance on the basis of prior
COPD GWAS regions (19).

Epigenetic modifications are potent
regulators of gene transcription. Morrow
and colleagues performed methylation
quantitative trait loci analyses to look for
SNPs associated with DNA methylation
levels and integrated these data with GWASs
and epigenome-wide association studies
(20). The authors found significant
colocalization of methylation quantitative
trait loci and GWAS loci, thereby
highlighting the importance of
genetic–epigenetic interactions in COPD
pathogenesis (20, 21). Epigenetic changes
such as promoter hypermethylation may

also contribute to neoplastic
transformation. Leng and colleagues (23)
examined sputum samples for the
methylation status of 12 genes linked to
lung cancer, COPD, and lung function
decline and found significant associations
between high methylation and FEV1

decline, time to lung cancer incidence, and
all-cause mortality (22, 23).

DNA Repair and Cell Cycle Regulation
Chronic tobacco use leads to the
accumulation of DNA damage. Sears and
colleagues described the role of xeroderma
pigmentosum group C (XPC) DNA repair
protein in smoking-related emphysema
(24). XPC was uniquely downregulated
among DNA repair genes in mice exposed
to smoke, and XPC knockout mice
exhibited airspace enlargement with age
and smoke exposure. These findings may be
related to the association between XPC
deficiency and the activation of apoptosis
and autophagy in lung epithelial cells (24).

Cigarette smoke may induce
premature cellular senescence. Senescent
cells can secrete proinflammatory
mediators that may propagate an injurious
pattern leading to COPD. Removal of the
cyclin-dependent kinase inhibitor p16
delays cell senescence in mice. However,
although cigarette smoke exposure in mice
led to an upregulation of p16 in the lung,
p16 knockout was not protective against
emphysema despite some attenuation in
acute inflammation. Therefore, chronic
inflammation in COPD may progress
in a p16-independent or senescence-
independent manner (25, 26).

Lung Cancer and Immunotherapy
Tobacco use is the most important risk
factor for the development of lung cancer.
Mice exposed to cigarette smoke alternating
with air on a monthly basis had a higher
incidence and multiplicity of lung cancer
as well as more severe emphysema than
mice continuously exposed to the same
cumulative amount of cigarette smoke.
Therefore, intermittent exposure to cigarette
smoke may be more harmful than
continuous exposure. The mechanisms
behind this thought-provoking observation
remain poorly understood but could be
related to the downregulation of nicotinic
acetylcholine receptors or to the
proliferation of cells that previously
incurred smoke-induced DNA damage
(27, 28).

Novel immune-based therapies have
ushered in a new era in oncology. Mark and
colleagues noted that lungs of patients with
COPD had greater numbers of CD31,
CD41, and CD81 cells as well as increased
CD41 Th1 polarization compared with
lungs of smokers without COPD (29).
This finding was present both in the
noncancerous lung tissue as well as in the
matching cancer, suggesting that the
immune composition of the lung permeates
the tumor environment (29, 30). Further
research is needed to clarify whether the
Th1 differentiation in COPD-affected lung
tissue is responsible for the observed
improved outcomes after immunotherapy.

Pulmonary Hypertension
Pulmonary hypertension may develop
in patients with COPD and portends a
poor prognosis. MicroRNA (miRNA)
dysregulation has been implicated in
pulmonary hypertension pathogenesis.
Musri and colleagues studied the miRNA
expression profiles of pulmonary arteries
from smokers with COPD, smokers without
COPD, and nonsmoker control subjects,
revealing differential regulation of multiple
miRNAs (31). The miRNA miR-197
correlated with airflow obstruction and was
downregulated in pulmonary artery
vascular remodeling. Transcription factor
E2F1, which is targeted by miR-197, was
upregulated in pulmonary arteries of
smokers versus nonsmokers, therefore tying
together decreased miR-197 expression
with cell cycle entry (31).

Clinical Manifestations

Environmental Factors
Environmental exposures including use of
biomass fuels have long been recognized as
potential risk factors for COPD. However,
two recent well-conducted studies
investigating this exposure revealed
conflicting results. Although Siddharthan
and colleagues confirmed increased odds of
COPD with household air pollution
exposure in their study of 13 low- and
middle-income country settings (32),
Amaral and colleagues found no such
association in participants recruited from
25 sites of the Burden of Obstructive Lung
Disease study (33). Likely contributors to
this discrepancy include the cross-sectional
nature of the studies and the self-reported
use of biomass fuels (34). In another study
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of World Trade Center–exposed firefighters,
higher post-9/11 concentrations of
blood neutrophils and eosinophils were
independently associated with accelerated
FEV1 decline after 15 years (35), although it
remains unclear whether disturbed blood
leukocyte counts are markers of increased
susceptibility to chronic airflow limitation
or of impaired recovery potential after
airway injury (36). Other environmental
factors such as diet and place of residence
have also been associated with COPD
pathogenesis and outcomes. For example, a
Western dietary pattern was linked to
higher COPD prevalence, worse respiratory
symptoms, and lower lung function (37,
38). In the SPIROMICS (Subpopulations
and Intermediate Outcome Measures In
COPD Study) cohort, a link was identified
between rural residence and COPD
exacerbations (39, 40).

Lung Function
Defining airflow obstruction as FEV1/FVC ratio
less than 0.7 versus the ratio below the lower
limit of normal remains controversial. In an
analysis of the TIOSPIR (Tiotropium Safety
and Performance In Respimat) study, although
the risk of all-cause mortality was similar
between individuals with FEV1/FVC greater
than or equal to or less than the lower limit of
normal, the latter group had a lower risk of
cardiovascular events but a higher risk of
respiratory exacerbations (41, 42).

The current use of FEV1% predicted to
grade the severity of airflow obstruction was
further validated in a study that found it to be
the best predictor of 5-year survival among
four different categorization methods (43, 44).
In a separate analysis comparing the 2015 to
2017 GOLD staging schema, the 2017 ABCD
schema, which does not incorporate FEV1,
resulted in worse mortality risk prediction (45),
highlighting the strong association between
lung function and clinical outcomes in COPD.
However, it should be emphasized that the
main purpose of GOLD ABCD staging is to
guide treatment and not to predict outcomes.

Several studies examining longitudinal
lung function decline shed light on the
multiple potential paths for disease
progression. Ross and colleagues identified
four distinct lung function trajectories in
the Normative Aging Study, which they
then applied to COPDGene (Genetic
Epidemiology of COPD) participants
(46, 47). The genetic contribution to these
trajectories was as high as 83%, and
membership in lower lung function

trajectories was associated with greater
parental histories of COPD, decreased exercise
capacity, greater dyspnea, and more frequent
COPD exacerbations. In the CARDIA
(Coronary Artery Risk Development in Young
Adults) study, the presence of any respiratory
symptom in young adulthood (age 25 yr) was
associated with excess FEV1 and FVC decline
and a higher incidence of obstructive and
restrictive lung disease 30 years later (48, 49).
In the COPDGene cohort, about a quarter of
smokers with preserved ratio impaired
spirometry transitioned to normal spirometry,
whereas another quarter transitioned to
GOLD 1 to 4 COPD over 5 years. Preserved
ratio impaired spirometry was associated with
lower mortality than COPD but higher
mortality than those with normal spirometry
(50, 51). Long-standing asthma is another
potential pathway for COPD development. In
a longitudinal study of women with prevalent
asthma, nearly half developed COPD over
more than 20 years of follow-up (52, 53).

Exacerbations
Prior exacerbations are a strong predictor of
subsequent events. In a large study of patients
with COPD, the number of moderate
exacerbations during the first-year baseline
period proportionately predicted the risk of
subsequent moderate exacerbations and the
risk of death over a mean follow-up of 4.9
years (54, 55). Comorbid conditions can also
affect and be affected by exacerbation events.
In one retrospective study of hospitalizations
due to COPD exacerbations, obesity was
associated with a longer length of stay and a
higher use of noninvasive and invasive
ventilation (56, 57). In the SUMMIT (Study
to Understand Mortality and Morbidity in
COPD) study of participants with COPD
and increased cardiac risk, COPD
exacerbations increased the risk of
subsequent cardiovascular events,
particularly in the first 30 days after
exacerbation (hazard ratio, 3.8; 95%
confidence interval [CI], 2.7–5.5) (58, 59).

In an analysis of the Nationwide
Readmission Database, the incidence of 30-
day readmissions after COPD exacerbations
was 19.2%, with more than half attributed to
respiratory conditions (60, 61). Factors
associated with readmissions included
lower income, higher comorbidity burden,
longer length of stay, and discharge to a
skilled nursing facility. In another study of
Medicare beneficiaries, the incidence of
readmission and death were 64.2% and
26.2%, respectively, 1 year after COPD

exacerbation (62, 63). These findings
underline the significant morbidity and
mortality associated with exacerbations
long after the immediate postdischarge
period.

Imaging
Chest computed tomography (CT) contains
a wealth of diagnostic and prognostic
information. In a population-based cohort
free of clinical lung disease, higher Pi10
(square root of wall area of a hypothetical
airway with an internal perimeter of 10
mm), a measure of airway disease, was
associated with faster lung function decline
as well as increased incidence of respiratory-
related hospitalization and death (64, 65). In a
population-based study, total airway count
was significantly lower in participants with
mild to moderate COPD than in never-
smokers and smokers without COPD and was
independently associated with lung function
decline (66, 67). Expiratory central
airway collapse has been linked to significant
respiratory morbidity in smokers. The
presence of paraseptal emphysema in the
paratracheal location has now been identified
as a risk factor for expiratory central airway
collapse (68, 69). A study from the
SPIROMICS cohort showed that exposure to
vapors, gas, dust, and fumes during the
longest job held was associated with more
severe emphysema and airway disease, even
after accounting for smoking history (70, 71).
A convolutional neural network analysis
performed on chest CT scans from the
COPDGene and ECLIPSE cohorts detected
and staged COPD with good accuracy but
showed fair discriminative ability to predict
acute respiratory events and death (72, 73).
More studies are needed to better understand
the clinical potential of machine learning
applications to chest imaging.

Comorbidities
Comorbidities are common in COPD and
influence patient outcomes. A higher
comorbidity burden as measured by the
Charlson index was associated with
increased readmission and death within 30
days of discharge for a COPD exacerbation
(74). In SPIROMICS, comorbid anemia was
strongly associated with decreased
exertional capacity and worse health status
(75). Osteoporosis is prevalent in COPD
partially because of shared risk factors,
such as smoking and steroid use. In a
longitudinal study of current and former
smokers, moderate to severe visually
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assessed emphysema, but not FEV1%
predicted, was associated with accelerated
decline of hip bone mineral density, thereby
informing the selection of susceptible smokers
for osteoporosis screening (76). Prevalence of
anxiety symptoms among patients with
COPD is also high. The Generalized Anxiety
Disorder-7, Hospital Anxiety and Depression
Scale, and Anxiety Inventory for Respiratory
Disease questionnaires have fair to moderate
psychometric properties in patients with
COPD compared with a questionnaire based
on Diagnostic and Statistical Manual of
Mental Disorders, Fifth Edition criteria (77).
Therefore, better screening tools for anxiety
are still needed in COPD.

Therapy

Bronchoscopic Lung Volume
Reduction
Bronchoscopic placement of valves results in
improvement in lung function in both
heterogeneous and homogeneous emphysema,
as long as there are no interlobar collaterals
(78, 79). In the LIBERATE (A Multicenter
Randomized Controlled Trial of Zephyr
Endobronchial Valve Treatment in
Heterogeneous Emphysema) study, 190
subjects with heterogeneous emphysema were
randomized to receive endobronchial valves
versus standard of care (80). At 12 months,
47.7% in the intervention arm had an
improvement in FEV1 of at least 15%,
compared with 16.8% in the control arm (80).
Clinically meaningful improvements were also
seen in quality of life, dyspnea, and the
6-minute-walk distance (Figure 1), thereby
providing the evidence basis for Food and
Drug Administration approval for use of this
device in the United States.

High-Flow Oxygen Therapy
High-flow nasal cannula oxygen therapy has
been shown to be beneficial in the acute setting
of COPD exacerbations. In a randomized
crossover trial of 32 participants with stable
hypercapnic COPD, Nagata and colleagues
showed that 6 weeks of therapy with high-flow
nasal cannula for at least 4 hours per night
during sleep at flow rates of 30 to 40 L/min in
addition to long-term oxygen therapy reduced
hypercapnia and resulted in improvements in
respiratory quality of life (81, 82).

Exacerbations
Viral infections account for up to half of
exacerbations (83). Stolz and colleagues

tested whether treatment intensification at
the onset of an upper respiratory tract
infection, by doubling the dose of inhaled
corticosteroid (ICS)/long-acting b-agonist
(LABA) for 10 days in patients on low-dose
ICS/LABA combination and at high risk for
exacerbations, would reduce COPD
exacerbations (84). In a double-blind,
randomized, placebo-controlled study of
450 patients, they found no difference in
exacerbation frequency in the subsequent
21 days between treatment arms, but
intensification was associated with a 72%
reduction in severe exacerbations requiring
hospitalization.

Although theophylline is recommended as
an additional choice for patients on ICS and
recurrent exacerbations, the TWICS
(Theophylline as Adjunct to Inhaled
Corticosteroids on Exacerbations in Patients
With COPD) study found that in 1,567
participants with high exacerbation risk and on

ICS therapy, exacerbation frequencywas similar
in the low-dose theophylline and placebo
groups (85). In a substudy of the SUMMIT
trial that enrolled participants with COPD
at increased cardiac risk, lung function,
respiratory events, cardiac events, and
all-cause mortality in those on LABAs
were not affected by concurrent use of
b-blockers (86, 87).

The role for “triple therapy” in COPD
remains controversial. The IMPACT
(Informing the Pathway of COPD
Treatment) study randomized 10,355
patients to once-daily fluticasone
furoate/umeclidinium/vilanterol (ICS/
long-acting muscarinic antagonist
[LAMA]/LABA) versus fluticasone
furoate/vilanterol (ICS/LABA) versus
umeclidinium/vilanterol (LAMA/LABA)
over 52 weeks (88). The rate of moderate or
severe exacerbations in the triple-therapy
group was 15% lower than the ICS/LABA
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Figure 1. Data from LIBERATE (A Multicenter Randomized Controlled Trial of Zephyr Endobronchial
Valve Treatment in Heterogeneous Emphysema) comparing valve-treated to placebo-treated patients
demonstrating changes in clinical outcomes over time from baseline out to 12 months (80). Data
presented are raw means6 SEM for changes from baseline to later time points after the
bronchoscopy for Zephyr Endobronchial Valve (EBV) (blue squares), standard of care (yellow circles),
and difference between EBV and standard of care (green triangles). (A) FEV1. (B) Residual volume.
(C) St. George’s Respiratory Questionnaire. (D) Six-minute-walk distance. 6MWD= 6-minute-walk
distance; Resp. = respiratory; RV = residual volume; SGRQ= St. George’s Respiratory Questionnaire.
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group and 25% lower than the
LAMA/LABA group. These differences
were greatest in those with blood
eosinophils greater than or equal to 150/ml.
In the TRIBUTE (Extrafine Inhaled Triple
Therapy versus Dual Bronchodilator
Therapy in Chronic Obstructive Pulmonary
Disease) study, participants with a history
of exacerbations and randomized to the
single-inhaler triple combination of
beclomethasone diproprionate/formoterol
fumarate/glycopyrronium experienced a
lower rate of moderate to severe
exacerbations over 1 year than participants
randomized to the single-inhaler dual-
bronchodilator combination of
indacaterol/glycopyrronium (rate ratio,
0.848; 95% CI, 0.723–0.995) (89). The
KRONOS (Triple Therapy with
Budesonide/Glycopyrrolate/Formoterol
Fumarate with Co-suspension Delivery
Technology versus Dual Therapies in
Chronic Obstructive Pulmonary Disease)
trial also demonstrated that triple therapy
improves lung function and symptoms and
reduces COPD exacerbations compared
with dual fixed-dose combination therapies
of ICS/LABA and LAMA/LABA, but in a
population not enriched for a history of
exacerbations (90).

Given the risk of pneumonia with ICS
therapy, there is growing recognition that it can
bewithdrawnwhen individuals no longermeet
criteria for being on it (91). The SUNSET
(Long-Term Triple Therapy De-escalation to
Indacaterol/Glycopyrronium in Patients with
Chronic Obstructive Pulmonary Disease) trial
showed that, in patients on triple therapy but
without frequent exacerbations, a direct
change from triple therapy to LAMA/LABA
without tapering did not result in a
meaningful decrease in lung function or in an
increase in exacerbation frequency (92).
However, there was a greater decrease in
lung function and higher exacerbation risk in
those with blood eosinophils greater than or
equal to 300/ml, suggesting these patients are
more likely to benefit from continued triple
therapy.

More efforts are being made to develop
new therapies and to identify patients likely
to respond to specific therapies. A pooled
analysis of two randomized trials (REACT
[Roflumilast in the Prevention of COPD
Exacerbations while Taking Appropriate
Combination Treatment] and RE2SPOND
[Roflumilast Effect on Exacerbations in
Patients on Dual (LABA/ICS) Therapy])
found that the benefit of adding the

phosphodiesterase-4 inhibitor roflumilast
to ICS/LABA in reducing exacerbation
rates is greater in those with a history of
prior hospitalization, two or more
exacerbations in the prior year, and a
higher eosinophil count (93, 94). Although
there remains interest in the use of
marijuana to treat chronic diseases,
Abdallah and colleagues randomized 16
subjects with severe COPD to receive
vaporized cannabis versus placebo and
found no improvements in lung function,
exertional breathlessness, or exercise
endurance (95).

Lung Function Decline
Other than smoking cessation, oxygen therapy,
and lung volume reduction procedures in a
subset of patients, there are currently no
disease-modifying therapies in COPD.
Although post hoc and subgroup analyses of
ICS/LABA and LAMA have shown some
reduction in rate of FEV1 decline, there are no
studies that have primarily examined this issue.
In a prespecified analysis of 15,457 participants
in the SUMMIT study, Calverley and
colleagues reported that the use of fluticasone
furoate alone or in combination with
vilanterol was associated with an 8 ml/yr
lower decline in FEV1 than placebo (96).
Although these results are encouraging, it
should be noted that the analysis was not
performed on an intention-to-treat basis,
and there were a considerable number of
dropouts in the placebo arm (97).

Smoking Cessation
Melzer and colleagues demonstrated that the
association between proactive
smoking cessation interventions and
prolonged quit rates was greater in those with
chronic respiratory disease (odds ratio, 3.45;
95% CI, 1.59–7.47 vs. odds ratio, 1.34; 95%
CI, 0.95–1.88) (98), suggesting that proactive
measures to enhance tobacco quit rates are
feasible and may be especially effective in
smokers who have diagnosed COPD (99).

Disease Management
Early identification and treatment of
exacerbations is likely associated with
reduction in hospitalization rates. However,
twomulticenter randomized controlled studies
examining the utility of telehealth monitoring
for early detection of exacerbations failed to
show any difference in hospitalizations over 9
to 12 months (100, 101). These data suggest
that simply monitoring patients is neither
medically effective nor cost effective (102).

Kalter-Leibovici and colleagues
randomized 1,202 ambulatory patients with
COPD to receive either recommended care
or a disease management intervention (103).
Disease management included trained
COPD nurses delivering in-person and
remote self-care education, monitoring
symptoms and adherence to therapy,
providing advice in the event of
exacerbations, and coordinating care with
other healthcare providers. There was no
difference between the two groups in terms
of first respiratory hospitalization or all-
cause death. A similar trial, the AIR study,
randomized 192 participants with moderate
to severe COPD to receive health coaching
by college graduates without any medical
training versus usual care and showed mild
improvement in quality of life and
depression symptoms but no difference in
COPD hospitalizations (104, 105).

Aboumatar and colleagues developed a
self-care intervention with input from
patients and caregivers to integrate
transitional care support and chronic
disease self-management (52). In a single-
center study, 240 patients were randomized
to receive usual transitional care or a
3-month individualized COPD self-
management plan. Compared with usual
care, the self-management plan was
associated with a significant decline in
COPD-related hospitalization and
emergency department visits at 6 months
and with improvements in the St. George’s
Respiratory Questionnaire score (52).

Physical Activity
It is now increasingly recognized that there
is a disconnect between change in exercise
capacity and daily physical activity in
patients with COPD, as physiological
improvements do not necessarily translate
into increases in physical activity (106).
Troosters and colleagues evaluated the
relative impact of a self-management
behavior-modification program combined
with bronchodilator therapy and exercise
training on exercise capacity and physical
activity (107). They found that self-
management behavior modification plus
placebo was associated with a significantly
increased step count at Week 12, but there
were no further increases in step count with
any of the other interventions (107). These
data suggest that behavioral factors are
important in increasing physical activity.

Coultas and colleagues performed a
prespecified secondary analysis of the
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COPD-SMART (Chronic Obstructive
Pulmonary Disease Self-Management
Activation Research Trial), which
randomized 325 outpatients with stable
COPD to usual care versus a home-based
health coaching intervention delivered by
telephone over 20 weeks (108). A greater
proportion of participants in the health
coaching arm reported being persistently
active over the 18-month follow-up
period (108, 109).

Patient Perspectives
In a comprehensive systematic review of
217 quantitative studies on outcomes
valued by patients with COPD, symptom
relief and exacerbations were rated as most
important (110). These outcomes are
currently recommended by GOLD to
guide clinical management. Personalized
medicine increasingly demands that
patient experiences and preferences be
taken into account to increase adherence

(111). Results from the Patient
Supplemental Oxygen Survey showed that
more than 50% of patients on long-term
oxygen therapy reported problems with
oxygen use, including equipment
malfunction, lack of physically
manageable portable systems, and lack of
high-flow portable systems (112).
Improvements in the systems in place to
support patients on oxygen therapy are
still clearly needed.

Palliation
Gershon and colleagues conducted a
population-based cross-sectional study using
linked administrative data of 151,912
individuals with advanced COPD in Ontario
between 2004 and 2014 (113). They found that
the use of palliative care services increased 1%
per year, from 5.3% in 2004 to 14.3% in 2014,
whereas the use of long-term oxygen therapy
increased 1.1% per year, from 26.4% in 2004 to
35.3% in 2013. The use of opioids

remained stable. Although these data are
encouraging, more efforts should be
made to offer palliation to those with
severe disease in the absence of disease-
modifying therapies (114).

Future Perspectives

The progress made in 2018 in our
understanding of the pathogenesis,
progression, and management of COPD is
encouraging. However, much work
remains to fully elucidate the various
clinical and biological phenotypes of this
disease. Advances in the fields of systems
biology, molecular profiling, and chest
imaging hold promise for the ultimate
quest of advancing personalized medicine
in COPD. n

Author disclosures are available with the text
of this article at www.atsjournals.org.
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